slightly with higher levels of theory.
From the internuclear distance, a quaiitative description of a bond can be determined. For example, the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ distances are predicted to be 1.291 and $1.295 \AA$, respectively, at the TZ2P/CCSD level of theory. Although slightly shorter than the prototypical C-C double bond length of ethylene, $r_{\mathrm{e}}=1.330$ $\AA,{ }^{15}$ each is characterized as a double bond. The distance between the C_{1} and C_{3} nuclei is determined to be $1.488 \AA$ at this level of theory. Since this is close to the typical value of the $\mathrm{C}-\mathrm{C}$ single bond length for cyclopropane, $r_{0}=1.510 \AA,{ }^{16}$ the $\mathrm{C}_{1}-\mathrm{C}_{3}$ linkage is considered to be a single bond.
The harmonic vibrational frequencies shown in Table I are consistent throughout the levels of theory investigated. However, the CH out-of-plane a_{2} bend $\left(\omega_{6}\right)$ becomes lower in frequency than the $\mathrm{C}-\mathrm{C} \mathrm{a}_{1}$ stretch (ω_{5}) when electron correlation is included. According to the normal coordinate analysis, the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ double bond stretchings are found to couple strongly (almost 50/50 mixing) with each other. The values of 1899 and $1621 \mathrm{~cm}^{-1}$ (DZP/CISD) for the combinations of these stretches fall within the range of double bond harmonic stretching vibrational frequencies.
The infrared intensities remain reasonably consistent as well, with the exception of the $\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{a}_{1}$ stretch $\left(\omega_{3}\right)$. While the SCF wavefunctions predict moderate intensities for the ω_{3} mode, correlated methods indicate that this mode exhibits the strongest intensity. In addition, the CH out-of-plane b_{1} bend (ω_{7}) has a relatively strong intensity.
An encouraging sequence of events occurred in the mid 1980s when ab initio studies ${ }^{17}$ aided the laboratory identification ${ }^{18}$ and, subsequently, the astronomical observation ${ }^{19}$ of cyclopropenylidene (: $\mathrm{CC}_{2} \mathrm{H}_{2}$). In the experimental study several band frequencies, including the CH out-of-plane b_{1} bend ($\nu=789 \mathrm{~cm}^{-1}$), were matched with theoretical frequencies (b_{1} bend, $\omega=854 \mathrm{~cm}^{-1}$ and

[^0]$I=53 \mathrm{~km} \mathrm{~mol}^{-1}$, DZP/SCF) to identify this molecule. The success of this search supports our prediction that the CH out-of-plane b_{1} bend (ω_{7}) may be used to identify cyclopropenylidenecarbene $\left(: \mathrm{C}=\mathrm{CC}_{2} \mathrm{H}_{2}\right)$. Theoretical investigations of a related structure, silacyclopropenylidene ($: \mathrm{SiC}_{2} \mathrm{H}_{2}$), ${ }^{20,21}$ indicate that it has several detectable modes. The CH out-of-plane b_{1} bend of : $\mathrm{SiC}_{2} \mathrm{H}_{2}$ is particularly intense ($740 \mathrm{~cm}^{-1}$ and 67 kcal mol^{-1}, TZ2P/CISD), ${ }^{20}$ a finding that is similar to our results for $: \mathrm{C}=\mathrm{CC}_{2} \mathrm{H}_{2}$. Due to its large IR intensity, the previously mentioned $\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{C}_{4}$ stretch ω_{3} at $1621 \mathrm{~cm}^{-1}$ (DZP/CISD) is another attractive cnoice.

The theoretical estimates given in Table II indicate that the dipole moment is approximately 5 D , a value significantly higher than that of either cyclopropenylidene (3.3 D) ${ }^{22}$ or silacyclopropenylidene (1 D). ${ }^{20}$ In cyclopropenylidenecarbene, the distance (along the C_{2} axis) between the hydrogens and the lone pair is much greater than in the other two systems, contributing to these differences. The values of each rotational constant remain within a range of $0.041 \mathrm{~cm}^{-1}$ throughout the levels of theory. Our recommended equilibrium rotational constants are those from the highest level of theory, namely, $A_{\mathrm{c}}=1.110, B_{\mathrm{c}}=0.273$, and C_{e} $=0.219 \mathrm{~cm}^{-1}$ (TZ2P/CCSD).

Conclusions

With large basis sets and high-level theoretical methods, the structure and physical properties of the exocyclic ring isomer of diacetylene, cyclopropenylidenecarbene ($: \mathrm{C}=\mathrm{CC}_{2} \mathrm{H}_{2}$), are predicted. Several of the vibrational frequencies appear to have IR intensities strong enough for detection. Moreover, cyclopropenylidenecarbene has a large dipole moment, raising the hope that experimental and astronomical investigations will soon meet with success.

Acknowledgment. We thank Dr. C. A. Gottlieb at the Division of Applied Sciences, Harvard University, for his informative suggestions and encouragement in initiating this study. We are grateful to J. Russell Thomas and Roger S. Grev for helpful discussions. This research was supported by U.S. National Science Foundation Grant No. CHE-8718469.
(20) Vacek, G.; Colegrove, B. T.; Schaefer, H. F. J. Am. Chem. Soc. 1991, 113, 3192.
(21) Frenking, G.; Remington, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 1986, $108,2169$.
(22) Swade, D. A. Astrophys. J. 1989, 345, 828.

Communications to the Editor

Palladium-Catalyzed Tandem Cyclization of 4,6- and 5,7-Diene Amides. A New Route toward the Pyrrolizidine and Indolizidine Alkaloids

Pher G. Andersson* and Jan-E. Bäckvall*

Department of Organic Chemistry
University of Uppsala, Box 531 S-75121 Uppsala, Sweden

Received June 8, 1992
A few years ago we developed several palladium-catalyzed 1,4 -oxidations of conjugated dienes which allow the regio- and stereoselective addition of nucleophiles to the 1 - and 4 -positions of the 1,3 -diene. ${ }^{1,2}$ These reactions, which proceed via (π-al-

[^1]lyl)palladium intermediates, were recently extended to intramolecular variants which give access to a number of heterocyclic systems (eqs 1 and 2). ${ }^{3.4}$

(1)

A further extension of the intramolecular reaction would be to use a nucleophile with the ability of making a 2 -fold attack

[^2]Scheme ${ }^{\boldsymbol{a}}$

${ }^{a}$ (a) $\mathrm{NH}_{3}, \mathrm{NaCN}, \mathrm{MeOH}, 85 \%$; (b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; (c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 96 \%$; (d) $\mathrm{NaCN}, \mathrm{THF} / \mathrm{DMSO}, 95 \%$; (e) KOH , t - $\mathrm{BuOH}, 67 \%$.
and direct it to the 1 -and 4 -positions of the 1,3 -diene. This would lead to a bicyclic system and would constitute a synthetically useful formal $[4+1]$ intramolecular cycloaddition (eq 3). In this communication, we report results on palladium-catalyzed cyclization of diene amides to pyrrolizidine and indolizidine systems on the basis of this approach.

(3)

In the approach according to eq 3, primary amides were chosen as nucleophiles. By varying the length of the tether between the conjugated diene and the amide it would be possible to produce either 5,5 - or 5,6 -bicyclic systems. These structural units are of great interest since they are found in the naturally occurring pyrrolizidine (1) and indolizidine (2) alkaloids. Recently, considerable effort ${ }^{5}$ has been directed toward the synthesis of these compounds because of their interesting pharmacological properties ${ }^{6}$ (cytotoxic, antimitotic immunostimulatory, and anticancer). However, in the great majority of recently published methods, the bicyclic compounds are synthesized in two separate operations. Only a few of the papers ${ }^{7}$ describe syntheses based on the more efficient strategy in which both rings are constructed in the same step.

The syntheses of the two diene amides, 4,6-heptadienoic acid amide (3a) ${ }^{8}$ and 5,7 -octadienoic acid amide (3b) used as substrates in the palladium-catalyzed tandem cyclization are outlined in Scheme I. The synthesis starts with ethyl 4,6 -heptadienoate, which is readily available from a Johnson-Claisen rearrangement
(5) (a) Polniaszek, R. P.; Belmont, S. E. J. Org. Chem, 1991, 56, 4868. (b) Polniaszek, R. P.; Belmont, S. E. J. Org. Chem. 1991, 56, 4688. (c) Choi, S.; Fairbanks, A. J.; Fleet, G. W. J.; Jones, A. H.; Nash, R. J.; Fellows, L. E. Tetrahedron Lett. 1991, 32, 5517. (d) Gruszecka-Kovalik, E.; Zalkow, L. H. J. Org. Chem. 1990, 55, 3398. (e) Wasserman, H. H.; Cook, J. D.; Vu, C. B. J. Org. Chem. 1990, 55, 1701. (f) Hua, D. H.; Bensoussan, D.; Bravo, A. A. J. Org. Chem. 1989, 54, 5399. (g) Keck, G. E.; Cressman, E. N. K.; Enholm, E. J. J. Org. Chem. 1989, 54, 4345. (h) Watanabe, Y.; Iida, H.; Kibayashi, C. J. Org. Chem. 1989, 54, 4088. (i) Heitz, M.-P.; Overman, L. E. J. Org. Chem. 1989, 54, 2591. (j) Brandi, A.; Cordero, F.; Querci, C. J. Org. Chem. 1989, 54, 1748. (k) Hudlicky, T.; Seoane, G.; Lovelace, T. C. J. Org. Chem. 1988, 53, 2094. (1) Shono, T.; Kise, N.; Tanabe, T. J. Org. Chem. 1988, 53, 1364. (m) Doedens, R. J.; Meier, G. P.; Overman, L. E. J. Org. Chem. 1988, 53, 685. (n) Hamana, H.; Ikota, N.; Ganem, B. J. Org. Chem. 1987, 52, 5494 . (0) Harris, T. M.; Harris, C. M.; Hill, J. E.; Ungemach, F. S.; Broquist, H. P.; Wickwire, B. M. J. Org. Chem. 1987, 52, 3094.
(6) (a) Mattocks, A. R. The Chemistry and Toxicology of Pyrrolizidine Alkaloids; Academic Press: London, 1986. (b) Elbein, A. D.: Molyneux, R. J. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1987; Vol. 5, Chapter 1.
(7) (a) Setoi, H.; Takeno, H.; Hashimoto, M. J. Org. Chem. 1985, 50, 3948. (b) Pearson, W. H.; Bergneier, S. C.; Degan, S.; Lin, K.-C.; Poon, Y.-F.; Schkeryantz, J. M.; Williams, J. P. J. Org. Chem. 1990, 55, 5719 . (c) Sibi, M. P.; Christensen, J. W. Tetrahedron Lett. 1990, 31, 5689 . (d) Vavrecka, M.; Janowitz, A.; Hesse, M. Tetrahedron Lett. 1991, 32, 5543. (e) Pearson, W. H.; Hines, J. V. Tetrahedron Lett. 1991, 32, 5513. (f) Jung, M. E.; Choi, Y. M. J. Org. Chem. 1991, 56, 6729.
(8) Khatri, N. A.; Schmitthenner, H. F.; Shringarpure, J.; Weinreb, S. M. J. Am. Chem. Soc. 1981, 103, 6387.

Table I. Effect of Various Oxidants on the Cyclization of 3a into Pyrrolizidinone 4a ${ }^{a}$

oxidant	solvent	temp $/{ }^{\circ} \mathrm{C}$	time $/ \mathrm{h}$	\% yield ${ }^{b}$
1,4-benzoquinone	AcOH	20	24	0
LiNO	AcOH	20	24	3
isoamyl nitrite	AcOH	20	24	5
urea hydroperoxide	AcOH	20	24	7
CuCl_{2}	AcOH	20	24	28
CuCl_{2}	THF	20	24	35
$\mathrm{CuCl}_{2} / \mathrm{O}_{2}{ }^{c}$	THF	20	24	54
$\mathrm{CuCl}_{2} / \mathrm{O}_{2}{ }^{c}$	THF	60	24	90

${ }^{a}$ The reaction was performed on a 1 -mmol scale using 0.1 mmol of $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ and 2 mmol of the oxidant. ${ }^{b}$ Entries $4-8$ refer to isolated yield after flash chromatography. ${ }^{c}$ The reaction was performed under an atmospheric pressure of O_{2} using $10 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{O}$ $\mathrm{Ac})_{2}$ and 2 equiv of CuCl_{2}.

Scheme II ${ }^{a}$

${ }^{a}$ (a) $\mathrm{NH}_{3}, \mathrm{NaCN}, \mathrm{MeOH}, 75 \%$; (b) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{CuCl}_{2} / \mathrm{O}_{2}, \mathrm{THF}, 60$ ${ }^{\circ} \mathrm{C}, 85 \%$; (c) $\mathrm{PtO}_{2}, \mathrm{H}_{2}, \mathrm{EtOH}, 95 \%$; (d) LiAlH_{4}, ether, 89%.
of divinylcarbinol and triethyl orthoacetate. ${ }^{9}$ Subsequent cyanide-catalyzed aminolysis ${ }^{10}$ afforded the diene amide 3a in good yield. The one-carbon elongation of 5 was performed via reduction, mesylation, and nucleophilic displacement with sodium cyanide in DMSO to give 6^{11} in 87% overall yield from 5. Hydrolysis of 6 with KOH in t - BuOH^{12} afforded diene amide 3b.

Preliminary attempts to cyclize 3a with $\mathrm{Pd}(\mathrm{OAc})_{2}$ using $1,4-$ benzoquinone as a reoxidant for palladium(0) resulted in the exclusive formation of the Diels-Alder adduct between the diene and 1,4 -benzoquinone. To circumvent this undesired reaction, several other oxidants were tried (Table I), and the best results were obtained using a system consisting of $\mathrm{CuCl}_{2} / \mathrm{O}_{2}$ in tetrahydrofuran (THF) at $60^{\circ} \mathrm{C} . .^{13}$ With the latter reaction conditions, pyrrolizidinone 4 a was obtained in 90% isolated yield. Application of the same conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{CuCl}_{2} / \mathrm{O}_{2}\right)$ to diene amide $\mathbf{3 b}$ resulted in the formation of the expected indolizidinone $\mathbf{4 b}$ in 85% isolated yield (eq 4). ${ }^{14}$

To further demonstrate the synthetic utility of the reaction, a short synthesis of (\pm)-heliotridane was carried out (Scheme II). The synthesis starts with the diene ester $7,{ }^{15}$ which was converted into the amide in the same manner as described for 3a. Palla-dium-catalyzed cyclization of 8 with $\mathrm{CuCl}_{2} / \mathrm{O}_{2}$ as the oxidant afforded the pyrrolizidinone 9^{16} in 85% isolated yield. Subsequent

[^3]hydrogenation of the double bond with $\mathrm{PtO}_{2} / \mathrm{H}_{2}$ takes place exclusively from the sterically least hindered side and gave the cis-pyrrolizidinone $10 .{ }^{16}$ Reduction of 10 with LiAlH_{4} afforded $(\pm$)-heliotridane (1a) in 54% overall yield from 7. The preparation of pyrrolizidinone 9 also constitutes a formal total synthesis of (\pm)-supinidine (1b) since 9 has previously been converted into 1b. ${ }^{17}$

Acknowledgment. Financial support from the Swedish Natural Science Research Council and the Swedish Board of Technical Development is gratefully acknowledged.

Supplementary Material Available: Description of general procedure for the palladium-catalyzed tandem cyclization reaction and listings of spectral data for $\mathbf{3 b}, 4 \mathrm{a}, \mathrm{b}$, and 8 (2 pages). Ordering information is given on any current masthead page.

[^4]
Ab Initio Calculations of the Singlet-Triplet Energy Difference in Phenylnitrene

David A. Hrovat, Edward E. Waali, ${ }^{\dagger}$ and Weston Thatcher Borden*

Department of Chemistry, University of Washington Seattle, Washington 98195

Received June 1, 1992
Depending on the conditions under which phenylnitrene (PhN) is generated, chemistry can be observed from either the singlet or the triplet state. ${ }^{1}$ EPR studies by Wasserman and co-workers established that the triplet is the ground state. ${ }^{2}$ Photodetachment measurements of phenylnitrene radical anion were interpreted by Drzaic and Brauman in terms of energy differences of 4.3 and $8.8 \mathrm{kcal} / \mathrm{mol}$ between the triplet and the two low-lying singlet states. ${ }^{3}$ These values, when compared to the energy difference of $36.0 \mathrm{kcal} / \mathrm{mol}$ measured between the ${ }^{3} \Sigma^{-}$ground state and the degenerate ${ }^{1} \Delta$ state of $\mathrm{HN},{ }^{4}$ indicate a tremendous stabilization of both singlet states, relative to the triplet, by the phenyl group in PhN .

In order to understand how a phenyl substituent exerts such a large stabilizing effect on both singlet states, we have performed ab initio MCSCF and CI calculations on PhN. Our calculations find that only one of the two degenerate singlet states of HN is significantly stabilized, relative to the triplet, by the phenyl group in PhN . Moreover, the selective stabilization of this singlet is computed to be considerably less than the $32 \mathrm{kcal} / \mathrm{mol}$ indicated by the original interpretation of the radical anion photodetachment spectrum. ${ }^{3}$

The geometries of the ${ }^{3} \mathrm{~A}_{2},{ }^{1} \mathrm{~A}_{2}$, and ${ }^{1} \mathrm{~A}_{1}$ states of PhN were optimized with the 3-21G basis set, ${ }^{5}$ using an MCSCF wave function that included all configurations in which the six benzene π electrons and the two, highest energy, nonbonding nitrogen electrons were distributed among seven π orbitals and the $\sigma-\mathrm{p}$ orbital that is largely localized on nitrogen. ${ }^{6}$ The optimized $\mathrm{C}-\mathrm{C}$

[^5]
${ }^{1} \mathbf{A}_{1}$

${ }^{1} \mathrm{~A}_{2}$

${ }^{3} \mathrm{~A}_{2}$

Figure 1. (8/8) MCSCF/3-21G bond lengths in the three lowest states of phenylnitrene.

Table I. Triplet Energies (hartrees) and Singlet-Triplet Energy Differences ($\mathrm{kcal} / \mathrm{mol}$) for PhN at (8/8) MCSCF/3-21G Optimized Geometries and for HN at ROHF/3-21G Optimized Geometries

	$(8 / 8)$	$(8 / 8)$		$\sigma-\mathrm{S}$,
state	MCSCF/3-21G	CI/6-31G ${ }^{*}$	$\pi-$ SDCI $/ 6-31 \mathrm{G}^{*}$	$\pi-\mathrm{SDCI} / 6-31 \mathrm{G}^{*}$
${ }^{3} \mathrm{~A}_{2}$	-283.0106	-284.5734	-284.6070	-284.7959
${ }^{1} \mathrm{~A}_{2}$	21.5	17.3	19.5	18.3
${ }^{1} \mathrm{~A}_{1}$	43.3	39.0	39.8	38.7
${ }^{3} \Sigma^{-}$	-54.6550^{a}	-54.9517^{a}		-55.0778^{6}
${ }^{1} \Delta$	44.6	43.2		42.7

${ }^{a}$ ROHF calculation on HN . ${ }^{b} \mathrm{SDCI}$ calculation on HN .
bond lengths in each state are shown in Figure 1. ${ }^{7}$ Vibrational analyses showed the optimized geometries to be minima. ${ }^{8}$

Using the $6-31 \mathrm{G}^{*}$ basis set, ${ }^{9} 8$-electron/8-orbital full CI calculations ${ }^{10}$ were performed with K orbitals ${ }^{11}$ at the $3-21 \mathrm{G}$ optimized geometries. The (8/8) MCSCF and CI energies with both basis sets are given in Table I. In order to assess the effect of additional configurations containing all the virtual π orbitals, π-SDCI calculations were performed, using one reference configuration for the two A_{2} states and two for ${ }^{1} \mathrm{~A}_{1} \cdot{ }^{10}$ Correlation between σ and π electrons was also provided by addition of all single σ excitations (σ-S, π-SDCI). The CI results are also given in Table I. For comparison, the results of comparable calculations on HN are also given in Table I. ${ }^{12}$

The results contained in Table I clearly show that the phenyl group provides the most stabilization for ${ }^{1} \mathrm{~A}_{2}$, the state in which one nonbonding nitrogen electron occupies a σ-p orbital and another occupies a π orbital. On going from HN to PhN , this singlet state is stabilized by about $25 \mathrm{kcal} / \mathrm{mol}$, relative to the triplet ground state, resulting in a predicted energy difference between ${ }^{1} \mathrm{~A}_{2}$ and ${ }^{3} \mathrm{~A}_{2}$ in PhN of $18.3 \mathrm{kcal} / \mathrm{mol}$ at the σ-S, π-SDCI level. In contrast, ${ }^{1} \mathrm{~A}_{1}$, which consists of two dominant configurations in which the $\sigma-$ p orbital is either doubly occupied or empty, ${ }^{13}$ is stabilized, relative to the triplet, by only about 4 $\mathrm{kcal} / \mathrm{mol}$ on going from HN to PhN .

The origin of the selective stabilization of ${ }^{1} \mathrm{~A}_{2}$ is indicated by the $\mathrm{C}-\mathrm{C}$ bond lengths shown in Figure 1. Unlike the case in either ${ }^{3} \mathrm{~A}_{2}$ or ${ }^{1} \mathrm{~A}_{1}$, in ${ }^{1} \mathrm{~A}_{2}$ there is a strong π bond formed between nitrogen and the phenyl group; and an open-shell π electron, which is localized on nitrogen in HN , is highly delocalized into the phenyl
(6) CASSCF calculations and numerical vibrational analyses were performed using GAMESS: Dupuis, M.; Spangler, D.; Wedolowski, J. J.; modified by Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. 1990, 10, 52.
(7) A complete listing of optimized geometries is available as supplementary material.
(8) Because vibrational analyses were performed using finite displacements, a vibrational analysis could only be performed on ${ }^{1} \mathbf{A}_{2}$, the singlet state of lowest energy.
(9) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, $28,213$.
(10) CI calculations were carried out using MELDF: McMurchie, L.; Elbert, S.; Langhoff, S.; Davidson, E. R.; Feller, D.; Rawlings, D.
(11) Feller, D.; Davidson, E. R. J. Chem. Phys. 1981, 74, 3877.
(12) Previous CI calculations with better basis sets have given ${ }^{1} \Delta x^{3} \Sigma$ energy separations of $41.2 \mathrm{kcal} / \mathrm{mol}$ (Fueno, T.; Bonacic-Koutecky, V.; Koutecky, J. J. Am. Chem. Soc. 1983, 105, 5547) and $40.6 \mathrm{kcal} / \mathrm{mol}$ (Alexander, M. H.; Werner, H.-J.; Dagdigian, P. J. J. Chem. Phys. 1988, 89, 1388).
(13) The configuration in which the $\sigma-\mathrm{p}$ orbital is filled is favored in all our calculations, but decreasingly so with more highly correlated wave functions.

[^0]: (13) Besler, B. H.; Scuseria, G. E.; Scheiner, A. C.; Schaefer, H. F. J. Chem. Phys. 1988, 89, 360.
 (14) Thomas, J. R.; DeLeeuw, B. J.; Vacek, G.; Schaefer, H. F. To be published.
 (15) Kuchitsu, K. J. Chem. Phys. 1966, 44, 906.
 (16) Endo, Y.; Chang, M. C.; Hirota, E. J. Mol. Spectrosc. 1987, 126, 63.
 (17) Lee, T. J.; Bunge, A.; Schaefer, H. F. J. Am. Chem. Soc. 1985, 107, 137.
 (18) Reisenauer, H. P.; Maier, G.; Riemann, A.; Hoffman, R. W. Angew. Chem., Int. Ed. (Engl.) 1984, 23, 641.
 (19) Thaddeus, P.; Vrtilek, J. M.; Gottlieb, C. A. Astrophys. J. 1985, 299, L63.

[^1]: (1) Bäckvall, J. E.; Byström, S. E.; Nordberg, R. E. J. Org. Chem. 1984, 49, 4619.

[^2]: (2) Bäckvall, J. E.; Nyström, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1985, 107, 3676.
 (3) (a) Bäckvall, J. E.; Andersson, P. G. Tetrahedron Lett. 1989, 40, 137. (b) Bäckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1990, 112, 3683. (c)

 Bäckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1992, 114, 6374.
 (4) Bäckvall, J. E.; Andersson, P. G. J. Org. Chem. 1991, 56, 2274.

[^3]: (9) Hudlicky, T.; Koszyk, J.; Kutchan, T. M.; Seth, J. P. J. Org. Chem. 1980, 45, 5020.
 (10) Högberg, T.; Ström, P.; Ebner, M.; Rämsby, S. J. Org. Chem. 1987, 52, 2033.
 (11) Roush, W. R.; Gillis, H. R.; Ko, A. I. J. Am. Chem. Soc. 1982, 104, 2269.
 (12) Hall, J. H.; Gisler, M. J. Org. Chem. 1976, 41, 3769.
 (13) For the use of CuCl_{2} or $\mathrm{CuCl}_{2} / \mathrm{O}_{2}$ as an oxidant in palladium-catalyzed reactions, see: (a) Bäckvall, J. E. Acc. Chem. Res. 1983, 16, 335. (b) Heumann, A. In Metal-promoted Selectivity in Organic Synthesis; Noels, F., et al., Eds.; Kluwer Academic Publishers: Dordrecht, Holland, 1991; p 133. (c) Tamaru, Y.; Hojo, M.; Higashimura, H.; Yoshida, Z. J. Am. Chem. Soc. 1988, $110,3994$.
 (14) Diene amides with an alkyl group (methyl or butyl) at the diene terminus gave a lower yield. Thus, 4,6 -octadienoic and undecadienoic acid amides afforded the corresponding pyrrolizidinones in $40-50 \%$ yield in a $1: 1$ ratio of cis and trans isomers.
 (15) Andersson, P. G.; Bäckvall, J. E. J. Org. Chem. 1991, 56, 5349.

[^4]: (16) Burnett, D. A.; Choi, J.-K.; Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1984, 106, 8201.
 (17) This transformation involves one step. See ref 16.

[^5]: ${ }^{\dagger}$ Permanent address: Department of Chemistry, University of Montana, Missoula, MT 59812-1006.
 (1) Review: Schuster, G. B.; Platz, M. S. Adv. Photochem., in press.
 (2) Wasserman, E.; Trozzolo, A. M.; Yager, W. A.; Murray, R. W. J. Chem, Phys. 1964, 40, 2408. The IR spectrum of the molecule in its ground state has also been published: Hayes, J. C.; Sheridan, R. S. J. Am. Chem. Soc. 1990, 112, 5879.
 (3) Drzaic, P. S.; Brauman, J. I. J. Am. Chem. Soc. 1984, 106, 3443. Drzaic, P. S.; Brauman, J. I. J. Phys. Chem. 1984, 88, 5285.
 (4) Engleking, P. C.; Lineberger, W. C. J. Chem. Phys. 1976, 65, 4323.
 (5) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.

